Summary: High-throughput analysis of behaviour is a pivotal instrument in modern neuroscience, allowing researchers to combine modern genetics breakthrough to unbiased, objective, reproducible experimental approaches. To this extent, we recently created an open-source hardware platform (ethoscope; Geissmann Q, Garcia Rodriguez L, Beckwith EJ et al. Rethomics: an R framework to analyse high-throughput behavioural data. PLoS One 2019;14:e0209331) that allows for inexpensive, accessible, high-throughput analysis of behaviour in Drosophila or other animal models. Here we equip ethoscopes with a Python framework for data analysis, ethoscopy, designed to be a user-friendly yet powerful platform, meeting the requirements of researchers with limited coding expertise as well as experienced data scientists. Availability and implementation: Ethoscopy is best consumed in a prebaked Jupyter-based docker container, ethoscope-lab, to improve accessibility and to encourage the use of notebooks as a natural platform to share post-publication data analysis. Ethoscopy is a Python package available on GitHub and PyPi. Ethoscope-lab is a docker container available on DockerHub. A landing page aggregating all the code and documentation is available at https://lab.gilest.ro/ethoscopy.
CITATION STYLE
Blackhurst, L., & Gilestro, G. F. (2023). Ethoscopy and ethoscope-lab: A framework for behavioural analysis to lower entrance barrier and aid reproducibility. Bioinformatics Advances, 3(1). https://doi.org/10.1093/bioadv/vbad132
Mendeley helps you to discover research relevant for your work.