To enable the optimal, biocompatible and non-destructive application of the highly useful copper (Cu+)-mediated alkyne-azide 'click' cycloaddition in water, we have isolated and characterized a 79-nucleotide DNA enzyme or DNAzyme, 'CLICK-17', that harnesses as low as sub-micromolar Cu+; or, surprisingly, Cu2+ (without added reductants such as ascorbate) to catalyze conjugation between a variety of alkyne and azide substrates, including small molecules, proteins and nucleic acids. CLICK-17's Cu+ catalysis is orders of magnitude faster than that of either Cu+ alone or of Cu+ complexed to PERMUT-17, a sequence-permuted DNA isomer of CLICK-17. With the less toxic Cu2+, CLICK-17 attains rates comparable to Cu+, under conditions where both Cu2+ alone and Cu2+ complexed with a classic accelerating ligand, THPTA, are wholly inactive. Cyclic voltammetry shows that CLICK-17, unlike PERMUT-17, powerfully perturbs the Cu(II)/Cu(I) redox potential. CLICK-17 thus provides a unique, DNA-derived ligand environment for catalytic copper within its active site. As a bona fide Cu2+-driven enzyme, with potential for being evolved to accept only designated substrates, CLICK-17 and future variants promise the fast, safe, and substrate-specific catalysis of 'click' bioconjugations, potentially on the surfaces of living cells.
CITATION STYLE
Liu, K., Lat, P. K., Yu, H. Z., & Sen, D. (2020). CLICK-17, a DNA enzyme that harnesses ultra-low concentrations of either Cu+or Cu2+to catalyze the azide-alkyne “click” reaction in water. Nucleic Acids Research, 48(13), 7356–7370. https://doi.org/10.1093/nar/gkaa502
Mendeley helps you to discover research relevant for your work.