The entangled “measurement state” (MS), predicted by von Neumann to arise during quantum measurement, seems to display paradoxical properties such as multiple macroscopic outcomes. But analysis of interferometry experiments using entangled photon pairs shows that entangled states differ surprisingly from simple superposition states. Based on standard quantum theory, this paper shows that the MS (i) does not represent multiple detector readings but instead represents nonparadoxical multiple statistical correlations between system states and detector readings, (ii) implies that exactly one outcome actually occurs, and (iii) implies that when one outcome occurs, the other possible outcomes simultaneously collapse nonlocally. Point (iii) resolves an issue first raised in 1927 by Einstein who demonstrated that quantum theory requires instantaneous state collapse. This conundrum’s resolution requires nonlocal correlations, which from today’s perspective suggests the MS should be an entangled state. Thus, contrary to previous presumed proofs of the measurement problem’s insolubility, we find the MS to be the collapsed state and just what we expect upon measurement.
CITATION STYLE
Hobson, A. (2022). Entanglement and the Measurement Problem. Quantum Engineering, 2022, 1–12. https://doi.org/10.1155/2022/5889159
Mendeley helps you to discover research relevant for your work.