Bovine pancreatic ribonuclease (RNase A) is the founding member of the RNase A superfamily. Members of this superfamily of ribonucleases have high sequence diversity, but possess a similar structural fold, together with a conserved His-Lys-His catalytic triad and structural disulfide bonds. Until recently, RNase A proteins had exclusively been identified in eukaryotes within vertebrae. Here, we discuss the discovery by Batot et al. of a bacterial RNase A superfamily member, CdiA-CTYkris: a toxin that belongs to an inter-bacterial competition system from Yersinia kristensenii. CdiA-CTYkris exhibits the same structural fold as conventional RNase A family members and displays in vitro and in vivo ribonuclease activity. However, CdiA-CTYkris shares little to no sequence similarity with RNase A, and lacks the conserved disulfide bonds and catalytic triad of RNase A. Interestingly, the CdiA-CTYkris active site more closely resembles the active site composition of various eukaryotic endonucleases. Despite lacking sequence similarity to eukaryotic RNase A family members, CdiA-CTYkris does share high sequence similarity with numerous Gram-negative and Gram-positive bacterial proteins/domains. Nearly all of these bacterial homologs are toxins associated with virulence and bacterial competition, suggesting that the RNase A superfamily has a distinct bacterial subfamily branch, which likely arose by way of convergent evolution. Finally, RNase A interacts directly with the immunity protein of CdiA-CTYkris, thus the cognate immunity protein for the bacterial RNase A member could be engineered as a new eukaryotic RNase A inhibitor.
CITATION STYLE
Cuthbert, B. J., Burley, K. H., & Goulding, C. W. (2018, January 2). Introducing the new bacterial branch of the RNase A superfamily. RNA Biology. Taylor and Francis Inc. https://doi.org/10.1080/15476286.2017.1387710
Mendeley helps you to discover research relevant for your work.