This paper presents a novel method to address the actuator saturation for nonlinear hybrid systems by directly incorporating user-defined input bounds in a controller design. In particular, we consider the application of bipedal walking and show that our method [based on a quadratic programming (QP) implementation of a control Lyapunov function (CLF)-based controller] enables a gradual performance degradation while still continuing to walk under increasingly stringent input bounds. We draw on our previous work, which has demonstrated the effectiveness of the CLF-based controllers for stabilizing periodic gaits for biped walkers. This paper presents a framework, which results in more effective handling of control saturations and provides a means for incorporating a whole family of user-defined constraints into the online computation of a CLF-based controller. This paper concludes with an experimental validation of the main results on the bipedal robot MABEL, demonstrating the usefulness of the QP-based CLF approach for real-time robotic control.
CITATION STYLE
Galloway, K., Sreenath, K., Ames, A. D., & Grizzle, J. W. (2015). Torque saturation in bipedal robotic walking through control Lyapunov function-based quadratic programs. IEEE Access, 3, 323–332. https://doi.org/10.1109/ACCESS.2015.2419630
Mendeley helps you to discover research relevant for your work.