EfficientNet-based machine learning architecture for sleep apnea identification in clinical single-lead ECG signal data sets

0Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Objective: Our objective was to create a machine learning architecture capable of identifying obstructive sleep apnea (OSA) patterns in single-lead electrocardiography (ECG) signals, exhibiting exceptional performance when utilized in clinical data sets. Methods: We conducted our research using a data set consisting of 1656 patients, representing a diverse demographic, from the sleep center of China Medical University Hospital. To detect apnea ECG segments and extract apnea features, we utilized the EfficientNet and some of its layers, respectively. Furthermore, we compared various training and data preprocessing techniques to enhance the model’s prediction, such as setting class and sample weights or employing overlapping and regular slicing. Finally, we tested our approach against other literature on the Apnea-ECG database. Results: Our research found that the EfficientNet model achieved the best apnea segment detection using overlapping slicing and sample-weight settings, with an AUC of 0.917 and an accuracy of 0.855. For patient screening with AHI > 30, we combined the trained model with XGBoost, leading to an AUC of 0.975 and an accuracy of 0.928. Additional tests using PhysioNet data showed that our model is comparable in performance to existing models regarding its ability to screen OSA levels. Conclusions: Our suggested architecture, coupled with training and preprocessing techniques, showed admirable performance with a diverse demographic dataset, bringing us closer to practical implementation in OSA diagnosis. Trial registration The data for this study were collected retrospectively from the China Medical University Hospital in Taiwan with approval from the institutional review board CMUH109-REC3-018.

Cite

CITATION STYLE

APA

Liu, M. H., Chien, S. Y., Wu, Y. L., Sun, T. H., Huang, C. S., Hsu, K. C., & Hang, L. W. (2024). EfficientNet-based machine learning architecture for sleep apnea identification in clinical single-lead ECG signal data sets. BioMedical Engineering Online, 23(1). https://doi.org/10.1186/s12938-024-01252-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free