Aims: Grassland-to-shrubland transition is a common form of land degradation in drylands worldwide. It is often attributed to changes in disturbance regimes, particularly overgrazing. A myriad of direct and indirect effects (e.g., accelerated soil erosion) of grazing may favor shrubs over grasses, but their relative importance is unclear. We tested the hypothesis that topsoil “winnowing” by wind erosion would differentially affect grass and shrub seedling establishment to promote shrub recruitment over that of grass. Methods: We monitored germination and seedling growth of contrasting perennial grass (Bouteloua eriopoda, Sporobolus airoides, and Aristida purpurea) and shrub (Prosopis glandulosa, Atriplex canescens, and Larrea tridentata) functional groups on field-collected non-winnowed and winnowed soils under well-watered greenhouse conditions. Results: Non-winnowed soils were finer-textured and had higher nutrient contents than winnowed soils, but based on desorption curves, winnowed soils had more plant-available moisture. Contrary to expectations, seed germination and seedling growth on winnowed and non-winnowed soils were comparable within a given species. The N2-fixing deciduous shrub P. glandulosa was first to emerge and complete germination, and had the greatest biomass accumulation of all species. Conclusions: Germination and early seedling growth of grasses and shrubs on winnowed soils were not adversely nor differentially affected comparing with that observed on non-winnowed soils under well-watered greenhouse conditions. Early germination and rapid growth may give P. glandulosa a competitive advantage over grasses and other shrub species at the establishment stage in grazed grasslands. Field establishment experiments are needed to confirm our findings in these controlled environment trials.
CITATION STYLE
Niu, F., Pierce, N. A., Archer, S. R., & Okin, G. S. (2021). Germination and early establishment of dryland grasses and shrubs on intact and wind-eroded soils under greenhouse conditions. Plant and Soil, 465(1–2), 245–260. https://doi.org/10.1007/s11104-021-05005-9
Mendeley helps you to discover research relevant for your work.