The strong association of birth weight with infant mortality is the main focus of birth weight research, with the assumption that birth weight is a major determinant of infant survival. Studies on factors of low birth weight in Kenya have neglected the flexible approach of using smooth functions for some covariates in models. Such flexible approach reveals detailed relationship of covariates with the response. The study sought to investigate risk factors of low birth weight in Kenya by assuming a flexible approach for continuous covariates and geographical random effect. The study used semi parametric models to flexibly model the effects of selected covariates and spatial effects. Our spatial analysis is based on a flexible geo-additive model using the provinces as the geographic unit of analysis, which allows to separate smooth structured spatial effects from random effect. A Gaussian model for birth weight in grams and a binary logistic model for the binary outcome were fitted. Continuous covariates was modeled by the penalized (p) splines and spatial effects was smoothed by the two dimensional p-spline. The specific objectives of the study was to investigate factors of low birth weight in Kenya by taking into account the hierarchical nature of child birth weight factors using a Bayesian hierarchical model. The study used secondary data from Kenya 2014 demographic and health survey (KDHS) data. The study found that child birth order, mother weight and height are significant predictors of birth weight. Secondary education for mother, birth order categories 2-3 and 4-5, wealth index of richer family and mother height were significant predictors of child size at birth. The area associated with low birth weight was North Eastern and areas with increased risk to less than average size at birth were Central and Eastern. The study found support for the flexible modeling of some covariates that clearly have nonlinear influences. Nevertheless there was no strong support for inclusion of geographical spatial analysis. The spatial patterns and the maps generated could be used for targeting development efforts at a glance. These findings have important implications for targeting policy as well as the search for left-out variables that might account for these residual spatial patterns.
CITATION STYLE
Wairimu Gathimba, N. (2017). Modeling Maternal Risk Factors Affecting Low Birth Weight Among Infants in Kenya. American Journal of Theoretical and Applied Statistics, 6(1), 22. https://doi.org/10.11648/j.ajtas.20170601.13
Mendeley helps you to discover research relevant for your work.