Geometric Attributes of Retaining Glycosyltransferase Enzymes Favor an Orthogonal Mechanism

28Citations
Citations of this article
72Readers
Mendeley users who have this article in their library.

Abstract

Retaining glycosyltransferase enzymes retain the stereochemistry of the donor glycosidic linkage after transfer to an acceptor molecule. The mechanism these enzymes utilize to achieve retention of the anomeric stereochemistry has been a matter of much debate. Re-analysis of previously released structural data from retaining and inverting glycosyltransferases allows competing mechanistic proposals to be evaluated. The binding of metal-nucleotide-sugars between inverting and retaining enzymes is conformationally unique and requires the donor substrate to occupy two different orientations in the two types of glycosyltransferases. The available structures of retaining glycosyltransferases lack appropriately positioned enzymatic dipolar residues to initiate or stabilize the intermediates of a dissociative mechanism. Further, available structures show that the acceptor nucleophile and anomeric carbon of the donor sugar are in close proximity. Structural features support orthogonal (front-side) attack from a position lying ≤90° from the C1-O phosphate bond for retaining enzymes. These structural conclusions are consistent with the geometric conclusions of recent kinetic and computational studies. © 2013 Schuman et al.

Cite

CITATION STYLE

APA

Schuman, B., Evans, S. V., & Fyles, T. M. (2013). Geometric Attributes of Retaining Glycosyltransferase Enzymes Favor an Orthogonal Mechanism. PLoS ONE, 8(8). https://doi.org/10.1371/journal.pone.0071077

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free