HPLC-qTOF-MS/MS-based profiling of flavan-3-ols and dimeric proanthocyanidins in berries of two muscadine grape hybrids FLH 13-11 and FLH 17-66

60Citations
Citations of this article
114Readers
Mendeley users who have this article in their library.

Abstract

FLH 13-11 FL and FLH 17-66 FL are two interspecific hybrid varieties of muscadine grape resulting from the cross of Vitis munsoniana (Simpson) ex Munson and V. rotundifolia. However, profiles of flavan-3-ols and proanthocyanidins in these two hybrids have not been characterized. Herein, we report the use of high-performance liquid chromatography-quadrupole, time-of-flight, tandem mass spectrometry (HPLC-qTOF-MS/MS) to characterize these two groups of metabolites in berries. Ripe berries collected from two consecutive cropping years were used to extract metabolites. Metabolites were ionized using the negative mode. Collision-induced dissociation was performed to fragmentize ions to obtain feature fragment profiles. Based on standards, MS features, and fragments resulted from MS/MS, four flavan-3-ol aglycones, 18 gallated or glycosylated conjugates, and eight dimeric procyanidins, were annotated from berry extracts. Of these 30 metabolites, six are new methylated flavan-3-ol gallates. Furthermore, comparative profiling analysis showed obvious effects of each cultivar on the composition these 30 metabolites, indicating that genotypes control biosynthesis. In addition, cropping seasons altered profiles of these metabolites, showing effects of growing years on metabolic composition. These data are informative to enhance the application of the two cultivars in grape and wine industries in the future.

Cite

CITATION STYLE

APA

Yuzuak, S., Ballington, J., & Xie, D. Y. (2018). HPLC-qTOF-MS/MS-based profiling of flavan-3-ols and dimeric proanthocyanidins in berries of two muscadine grape hybrids FLH 13-11 and FLH 17-66. Metabolites, 8(4). https://doi.org/10.3390/metabo8040057

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free