Combination of Structure Databases, In Silico Fragmentation, and MS/MS Libraries for Untargeted Screening of Non-Volatile Migrants from Recycled High-Density Polyethylene Milk Bottles

7Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Chemical contamination is one of the major obstacles for mechanical recycling of plastics. In this article, we built and open-sourced an in-house MS/MS library containing more than 500 plastic-related chemicals and developed mspcompiler, an R package, for the compilation of various libraries. We then proposed a workflow to process untargeted screening data acquired by liquid chromatography high-resolution mass spectrometry. These tools were subsequently employed to data originating from recycled high-density polyethylene (rHDPE) obtained from milk bottles. A total of 83 compounds were identified, with 66 easily annotated by making use of our in-house MS/MS libraries and the mspcompiler R package. In silico fragmentation combined with data obtained from gas chromatography-mass spectrometry and lists of chemicals related to plastics were used to identify those remaining unknown. A pseudo-multiple reaction monitoring method was also applied to sensitively target and screen the identified chemicals in the samples. Quantification results demonstrated that a good sorting of postconsumer materials and a better recycling technology may be necessary for food contact applications. Removal or reduction of non-volatile substances, such as octocrylene and 2-ethylhexyl-4-methoxycinnamate, is still challenging but vital for the safe use of rHDPE as food contact materials.

Cite

CITATION STYLE

APA

Su, Q. Z., Vera, P., & Nerín, C. (2023). Combination of Structure Databases, In Silico Fragmentation, and MS/MS Libraries for Untargeted Screening of Non-Volatile Migrants from Recycled High-Density Polyethylene Milk Bottles. Analytical Chemistry, 95(23), 8780–8788. https://doi.org/10.1021/acs.analchem.2c05389

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free