Background: Programmed death-ligand 1 (PD-L1) expression in metastatic renal cell carcinoma (RCC) correlates with a worse prognosis, but whether it also predicts responsiveness to anti-PD-1/PD-L1 therapy remains unclear. Most studies of PD-L1 are limited by evaluation in primary rather than metastatic sites, and in biopsy samples, which may not be representative. These limitations may be overcome with immuno-positron emission tomography (iPET), an emerging tool allowing the detection of cell surface proteins with radiolabeled antibodies. Here, we report iPET studies of PD-L1 in a preclinical tumorgraft model of clear cell RCC (ccRCC) from a patient who had a favorable response to anti-PD-1 therapy. Case presentation: A 49-year-old man underwent a cytoreductive nephrectomy in 2017 of a right kidney tumor invading into the adrenal gland that was metastatic to the lungs and a rib. Histological analyses revealed a ccRCC of ISUP grade 4 with extensive sarcomatoid features. IMDC risk group was poor. Within two hours of surgery, a tumor sample was implanted orthotopically into NOD/SCID mice. Consistent with an aggressive tumor, a renal mass was detected 18 days post-implantation. Histologically, the tumorgraft showed sarcomatoid differentiation and high levels of PD-L1, similar to the patient's tumor. PD-L1 was evaluated in subsequently transplanted mice using iPET and the results were compared to control mice implanted with a PD-L1-negative tumor. We labeled atezolizumab, an anti-PD-L1 antibody with a mutant Fc, with zirconium-89. iPET revealed significantly higher 89Zr-atezolizumab uptake in index than control tumorgrafts. The patient was treated with high-dose IL2 initially, and subsequently with pazopanib, with rapidly progressive disease, but had a durable response with nivolumab. Conclusions: To our knowledge, this is the first report of non-invasive detection of PD-L1 in renal cancer using molecular imaging. This study supports clinical evaluation of iPET to identify RCC patients with tumors deploying the PD-L1 checkpoint pathway who may be most likely to benefit from PD-1/PD-L1 disrupting drugs.
CITATION STYLE
Vento, J., Mulgaonkar, A., Woolford, L., Nham, K., Christie, A., Bagrodia, A., … Brugarolas, J. (2019). PD-L1 detection using 89Zr-atezolizumab immuno-PET in renal cell carcinoma tumorgrafts from a patient with favorable nivolumab response. Journal for ImmunoTherapy of Cancer, 7(1). https://doi.org/10.1186/s40425-019-0607-z
Mendeley helps you to discover research relevant for your work.