The net erosion-deposition rate of an avalanche is fundamental to its dynamics and in determining its growth or decay. Small-scale experiments are performed by releasing a given volume of yellow sand onto a stationary erodible red sand layer on a rough inclined plane. Depending on the erodible layer depth and the slope angle, the avalanche is found to either decay, grow, propagate steadily or rapidly shed grains to produce secondary avalanches. The use of different coloured sand with identical properties shows that a particle exchange occurs, which eventually results in a flow that is comprised entirely of particles from the stationary layer rather than the initial release. It is notoriously difficult to model the erosion and deposition processes in granular flows, but it is shown that a two-dimensional depth-averaged avalanche model, with a hysteretic basal friction law, can reproduce all of the observed behaviours. The results illustrate how a continuous exchange of particles with the substrate layer is fundamentally important to the propagation of such avalanches. An investigation into long distance propagation behaviour reveals that avalanches can reach a steady state, the size and speed of which are independent of the initially released volume. In certain conditions avalanches can grow to steady states that are significantly more massive than the flows from which they are originally formed. This paper demonstrates the importance of correctly including erosion-deposition in operational forecast models of snow avalanches and other geophysical mass flows.
CITATION STYLE
Edwards, A. N., Viroulet, S., Johnson, C. G., & Gray, J. M. N. T. (2021). Erosion-deposition dynamics and long distance propagation of granular avalanches. Journal of Fluid Mechanics, 915. https://doi.org/10.1017/jfm.2021.34
Mendeley helps you to discover research relevant for your work.