Osteoarthritis (OA) is a multifactorial joint disease mainly affecting articular cartilage (AC) with a relevant biomechanical component. During endochondral ossification growth plate (GP) chondrocytes arrange in columns. GPs do not ossify in skeletally mature rodents. In neonatal mice, an altered joint loading induces GP chondrocyte disorganization. We aimed to study whether experimental OA involves GP disorganization in adult mice and to assess if it may have additional detrimental effects on AC damage. Knee OA was induced by destabilization of the medial meniscus (DMM) in wild-type (WT) adult mice, and in Tamoxifen-inducible Ellis-van-Creveld syndrome protein (Evc) knockouts (EvccKO), used as a model of GP disorganization due to Hedgehog signalling disruption. Chondrocyte column arrangement was assessed in the tibial GP and expressed as Column Index (CI). Both DMM-operated WT mice and non-operated-EvccKO showed a decreased CI, indicating GP chondrocyte column disarrangement, although in the latter, it was not associated to AC damage. The most severe GP chondrocyte disorganization occurred in DMM-EvccKO mice, in comparison to the other groups. However, this altered GP structure in DMM-EvccKO mice did not exacerbate AC damage. Further studies are needed to confirm the lack of interference of GP alterations on the analysis of AC employing OA mice.
CITATION STYLE
Lamuedra, A., Gratal, P., Calatrava, L., Ruiz-Perez, V. L., Largo, R., & Herrero-Beaumont, G. (2020). Disorganization of chondrocyte columns in the growth plate does not aggravate experimental osteoarthritis in mice. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-67518-0
Mendeley helps you to discover research relevant for your work.