With an attempt to economically and efficiently improve the water resistance of defatted soya bean flour (DSF)-based wood adhesives, DSF was subjected to thermal treatment at various temperatures (65°C, 80°C, 95°C, 110°C and 125°C) for 30 min. The effects of thermal treatment temperature onto the chemical structure, crystalline degree, water-insoluble content and acetaldehyde value of the thermally treated DSF (TDSF) were investigated. The thermal stabilities and bonding properties of soya bean adhesives prepared from T-DSF and cross-linker epichlorohydrin-modified polyamide (EMPA) were also investigated. Test results indicated that both the water-insoluble content and the acetaldehyde value of T-DSF increased after thermal treatment, reaching the highest values of 27.28% and 26.81mgg−1, respectively. All plywood bonded with the T-DSF-based adhesive withstood a 28 h boiling- dry-boiling accelerated ageing treatment, while plywood bonded with the DSF-based adhesive delaminated after 4 h of water boiling, demonstrating the significantly improved water resistance of the T-DSF-based adhesives. Related analyses also confirmed that this improvement was due to: (i) the formation of insoluble cross-linked structures of T-DSF resulting from protein-protein self-cross-linking reactions and the protein- carbohydrate Maillard reaction and (ii) increased cross-linking efficiency between T-DSF and cross-linker EMPA owing to more T-DSF-reactive groups being released after thermal treatment.
CITATION STYLE
Zhang, B. H., Fan, B., Li, M., Zhang, Y. H., & Gao, Z. H. (2018). Effects of thermal treatment on the properties of defatted soya bean flour and its adhesion to plywood. Royal Society Open Science, 5(5). https://doi.org/10.1098/rsos.180015
Mendeley helps you to discover research relevant for your work.