Magnetotelluric (MT) soundings were carried out in the period range of 20 to 6000 s along profiles roughly orthogonal to the Campos do Jordão Railway (CJRW), in the Brazilian southeastern region. The profiles were located over two adjacent regions with contrasting conductivity, the conductive sedimentary region of the Taubaté Basin and the resistive crystalline region of the Serra da Mantiqueira. The railway operates with DC current that produces an intense electromagnetic noise but only during diurnal periods, being turned off at night. The objective of this study is to characterize the CJRW noise in order to verify its effect on MT parameters. It was inferred that the entire length of the Taubaté Basin is probably affected by the noise, whereas in the crystalline terrains the noise reaches distances in the range of 76 to 126 km. The electric channels show a strong dependence on geology which is suggestive of the potential application of the CJRW as a controlled source in geophysical studies. The data were processed with modern techniques presently available to the scientific community. Under the conditions of the present study, it was observed that the robust Single Station technique is as efficient as the robust Remote Reference to remove the kind of noise generated by the CJRW, an intense perturbation that affects only some well-defined portions of the time series. Finally, the analyses reaffirm the necessity of a careful choice of the station to be used as reference in the Remote Reference technique. Copyright © The Society of Geomagnetism and Earth, Planetary and Space Sciences (SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sciences.
CITATION STYLE
Pádua, M. B., Padilha, A. L., & Vitorello, Í. (2002). Disturbances on magnetotelluric data due to DC electrified railway: A case study from southeastern Brazil. Earth, Planets and Space, 54(5), 591–596. https://doi.org/10.1186/BF03353047
Mendeley helps you to discover research relevant for your work.