Sensory hair cells are coordinately oriented within each inner ear sensory organ to exhibit a particular form of planar cell polarity (PCP) necessary for mechanotransduction. However, the developmental events associated with establishing PCP in the vestibule are unclear, hindering data interpretation and employment of the vestibule for PCP studies. Herein, we investigated PCP of the mouse vestibular organs. We further characterised cell cycle exit, cell differentiation, and PCP establishment in the utricle. We found that hair cells formed first in the striolar and medial extrastriolar (MES) regions of the utricle at embryonic day 11.5 (E11.5), while cells in the lateral extrastriolar region (LES) mostly formed at E13.5. Cell differentiation was initiated in the striolar region, which expanded first toward the MES, then to the LES by E15.5. The polarity of hair cells was established at birth along a putative line of polarity reversal (LPR), lateral to the striolar region. Core PCP protein Vangl2 emerged in the cell boundaries since E11.5, while cell intrinsic polarity protein Gαi3 appeared at E12.5, then polarized to the bare zone of individual hair cell at E13.5. These findings provide a blueprint of the developmental events associated with establishing PCP in the utricle.
CITATION STYLE
Yang, X., Qian, X., Ma, R., Wang, X., Yang, J., Luo, W., … Ren, D. (2017). Establishment of planar cell polarity is coupled to regional cell cycle exit and cell differentiation in the mouse utricle. Scientific Reports, 7. https://doi.org/10.1038/srep43021
Mendeley helps you to discover research relevant for your work.