The similarity of crawling mechanisms in aquatic and terrestrial gastropods

10Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Crawling gastropods are unique models for studying the functioning of smooth muscles and ciliated epithelia, since they cover the foot sole and are involved in locomotion, allowing for direct investigation. Two types of crawling are known: creeping by muscular waves in terrestrial gastropods such as Helix and сiliary gliding in aquatic gastropods such as Lymnaea. It was found that the smooth muscles that underlie the ciliated epithelium in Lymnaea are involved in gliding and contribute significantly to fast crawling. Thus, the locomotor apparatus is fundamentally the same in both snails and the difference between crawling reflects an adaptation to a habitat. The control of crawling speed is also the same. Tonic contraction, relaxation, and rhythmic contractions are involved in this control. During a locomotor episode, the sole length and crawling speed spontaneously change and directly correlate with each other via the contraction force of the muscle cells in the locomotory waves. Dopamine, unlike ergometrine, decreases the sole length and crawling speed. Serotonin stimulates, increases crawling and determines the number of muscle cells involved in the locomotory waves for each locomotor episode. This control (taking into account heterogeneity) apparently might exist in any other phasic smooth muscle, including vertebrates.

Cite

CITATION STYLE

APA

Pavlova, G. A. (2019, February 12). The similarity of crawling mechanisms in aquatic and terrestrial gastropods. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. Springer Verlag. https://doi.org/10.1007/s00359-018-1294-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free