Runx2 is a key transcription factor in bone development regulating several processes, including osteoblast apoptosis. The antiapoptotic effects of parathyroid hormone (PTH) in osteoblasts depend on Runx2-mediated transcription of prosurvival genes. In the kidney, PTH-related protein (PTHrP) promotes tubulointerstitial cell survival by activating the PTH/PTHrP type 1 receptor. We found that Runx2 is expressed in renal tubuloepithelial MCT and HK2 cell lines in vitro and in the mouse kidney tubuloepithelium in vivo. The 1-36 amino-acid fragment of PTHrP was found to increase the expression and nuclear translocation of Runx2 in both cell lines in a dose-and time-dependent manner. PTHrP(1-36) protected renal tubuloepithelial cells from folic acid toxicity and serum deprivation, an effect inhibited by a dominant-negative Runx2 construct or a Runx2 siRNA. Furthermore, PTHrP(1-36) upregulated the antiapoptotic proteins Bcl-2 and osteopontin, and these effects were abolished by Runx2 siRNA. Runx2, osteopontin, and Bcl-2 were increased in tubuloepithelial cells from transgenic mice with PTHrP overexpression and in wild-type mice with acute or chronic renal failure. Thus, PTHrP regulates renal tubuloepithelial cell survival via Runx2 in the mammalian kidney. © 2013 International Society of Nephrology.
CITATION STYLE
Ardura, J. A., Sanz, A. B., Ortiz, A., & Esbrit, P. (2013). Parathyroid hormone-related protein protects renal tubuloepithelial cells from apoptosis by activating transcription factor Runx2. Kidney International, 83(5), 825–834. https://doi.org/10.1038/ki.2012.476
Mendeley helps you to discover research relevant for your work.