MODEL PREDIKSI PENYAKIT GINJAL KRONIK MENGGUNAKAN RADIAL BASIS FUNCTION

  • Santosa S
  • Widjanarko A
  • Supriyanto C
N/ACitations
Citations of this article
52Readers
Mendeley users who have this article in their library.

Abstract

Abstrak: Penyakit ginjal kronik adalah suatu sindrom klinis. Penyakit ini disebabkan oleh penurunan fungsi ginjal yang bersifat menahun, progresif, bersifat persisten, dan irreversibel. Diagnosa dini diperlukan agar penderitanya tidak mengalami infark ginjal atau kematian mendadak. Pencegahan dapat dilakukan melalui prediksi yang tepat. Penelitian Prediksi Penyakit Ginjal Kronik pada saat ini telah dilakukan oleh beberapa peneliti. Namun peningkatan akurasi diperlukan untuk menunjang tugas dan fungsi tenaga medis dalam menegakkan diagnosa. Saat ini tingkat akurasi model penelitian sebelumnya baru mencapai 91.71 %. Guna meningkatkan akurasi tersebut penelitian ini menggunakan pendekatan Radial Basis Function. Eksperimen dilakukan dengan parameter uji iterasi 500 -10000 dan konstanta pembelajaran antara 0.15-0.3. Dari uji coba tersebut didapatkan hasil yang lebih baik daripada penelitian sebelumnya, yakni sebesar 93.75% pada konstanta pembelajaran 0.2 dan iterasi 2000. Abstract: Chronic kidney disease is a clinical syndrome. The disease is caused by a decrease in kidney function that a chronic, progressive, persistent, and irreversible. Early diagnosis is necessary so that the sufferer does not undergo renal infarction or sudden death. Prevention can be done through a correct prediction. Research of Chronic Kidney Disease Prediction at this time has been done by several researchers, but accuracy improvement is still needed. Improved accuracy is required in order to support the tasks and functions of medical personnel diagnosis. Current level of accuracy of the models previous research has only reached 91.71%. To improve accuracy, this study uses Radial Basis Function approach. Experiments performed by epoch parameters iteration 500-10000 and learning rate between 0.15-0.3. This experiment showed better results from previous studies, which amounted to 93.75% on a learning rate 0.2 and epoch 2000.

Cite

CITATION STYLE

APA

Santosa, S., Widjanarko, A., & Supriyanto, C. S. (2017). MODEL PREDIKSI PENYAKIT GINJAL KRONIK MENGGUNAKAN RADIAL BASIS FUNCTION. Pseudocode, 3(2), 163–170. https://doi.org/10.33369/pseudocode.3.2.163-170

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free