The analysis of extracellular vesicles (EVs) typically requires tedious and time-consuming isolation process from bio-fluids. We developed a nanoparticle-based time resolved fluorescence immunoassay (NP-TRFIA) that uses biotinylated antibodies against the proteins of tetraspanin family and tumor-associated antigens for capturing EVs from urine samples and cell culture supernatants without the need for isolation. The captured-EVs were detected either with Eu3+-chelate or Eu3+-doped nanoparticle-based labels conjugated either to antibodies against the tetraspanins or lectins targeting the glycan moieties on EVs surface. The NP-TRFIA demonstrated specific capturing and detection of EVs by antibodies and lectins. Lectin-nanoparticle based assays showed 2–10 fold higher signal-to-background ratio compared with lectin-chelate assays. The nanoparticle assay concept allowed surface glycosylation profiling of the urine derived-EVs with lectins. It was also applied to establish an assay showing differential expression of tumor-associated proteins on more aggressive (higher ITGA3 on DU145- and PC3-EVs) compared to less aggressive (higher EpCAM on LNCaP-EVs) PCa- cell lines derived-EVs. This NP-TRFIA can be used as a simple tool for analysis and characterization of EVs in urine and cell culture supernatants. Such approach could be useful in identification of disease-specific markers on the surface of patient-derived urinary EVs.
CITATION STYLE
Islam, M. K., Syed, P., Lehtinen, L., Leivo, J., Gidwani, K., Wittfooth, S., … Lamminmäki, U. (2019). A Nanoparticle-Based Approach for the Detection of Extracellular Vesicles. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-46395-2
Mendeley helps you to discover research relevant for your work.