Hamiltonian theory of adiabatic motion of relativistic charged particles

44Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A general Hamiltonian theory for the adiabatic motion of relativistic charged particles confined by slowly varying background electromagnetic fields is presented based on a unified Lie-transform perturbation analysis in extended phase space (which includes energy and time as independent coordinates) for all three adiabatic invariants. First, the guiding-center equations of motion for a relativistic particle are derived from the particle Lagrangian. Covariant aspects of the resulting relativistic guiding-center equations of motion are discussed and contrasted with previous works. Next, the second and third invariants for the bounce motion and drift motion, respectively, are obtained by successively removing the bounce phase and the drift phase from the guiding-center Lagrangian. First-order corrections to the second and third adiabatic invariants for a relativistic particle are derived. These results simplify and generalize previous works to all three adiabatic motions of relativistic magnetically trapped particles. © 2007 American Institute of Physics.

Cite

CITATION STYLE

APA

Tao, X., Chan, A. A., & Brizard, A. J. (2007). Hamiltonian theory of adiabatic motion of relativistic charged particles. Physics of Plasmas, 14(9). https://doi.org/10.1063/1.2773702

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free