Plasma membrane P-glycoprotein is known as an ATP-dependent drug efflux pump that confers multidrug resistance to tumor cells. None of the reported purification procedures worked properly for our P-glycoprotein-over-producing cell lines, i.e. murine lymphoid leukemia P388/ADR25, rat hepatoma AS30- D/COL10, and human lymphoblastic leukemia CEM/VLB5 cells. We have thus developed a general procedure for efficient purification of P-glycoprotein by combining solubilization with sodium dodecyl sulfate and chromatography on ceramic hydroxyapatite. This procedure was successful for the three cell lines and yielded 70% of the P-glycoprotein present in the starting plasma membranes with more than 99% purity. After exchanging sodium dodecyl sulfate into dodecyl maltoside and reconstitution into liposomes, purified P- glycoprotein exhibited a specific ATPase activity of about 200 nmol/min/mg, which was very similar to that obtained for P-glycoprotein solubilized and purified with 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonic acid. This ATPase activity was sensitive to orthovanadate inhibition and stimulated by verapamil and other drugs. More importantly, drug transport properties of the reconstituted P-glycoprotein were comparable with those of P-glycoprotein embedded in plasma membranes. Since it is virtually devoid of lipids, this preparation is suitable for both functional and structural investigations.
CITATION STYLE
Dong, M., Penin, F., & Baggetto, L. G. (1996). Efficient purification and reconstitution of P-glycoprotein for functional and structural studies. Journal of Biological Chemistry, 271(46), 28875–28883. https://doi.org/10.1074/jbc.271.46.28875
Mendeley helps you to discover research relevant for your work.