In the next years, modular multilevel converters (MMCs) are going to be a next generation multilevel converters for medium to high voltage conversion applications, such as medium voltage motor drives, medium voltage flexible AC transmission systems (FACTS) and high voltage direct current transmission. They provide advantages such as high modularity, availability, low generation of harmonics, etc. However, the circulating current distorts the leg currents and increases the rated current of power devices, which further increases system cost. This paper focuses on analysis and suppression of these currents in a MMC using two algorithms for tracking of harmonics. For this work resonant controllers and repetitive controllers have been selected. Both controllers are analyzed and simulations results are presented. Moreover, the controllers have been tested and validated for a three phase MMC operating as an inverter using a real processing platform based on Zynq by Xilinx and designed to control large multilevel converters and in a real MMC prototype. These results are provided to demonstrate the feasibility of the proposed method.
CITATION STYLE
Moranchel, M., Bueno, E., Sanz, I., & Rodríguez, F. J. (2017). New approaches to circulating current controllers for modular multilevel converters. Energies, 10(1). https://doi.org/10.3390/en10010086
Mendeley helps you to discover research relevant for your work.