The term allergy, coined by von Pirquet in 1906, is used to define the series of events which occurs when an antigen, which is not harmful in itself, causes an immune response, leading to symptoms and disease in genetically predisposed individuals. An antigen that induces the allergic response is called an allergen (Shaikh, 2001). The allergic response manifested on exposure to a harmless allergen is the result of a complex orchestrated interaction of various immune cells and immunoglobulins. Allergy and asthma are a spectrum of diseases based on various genetic and physiologic mechanisms (Shaikh, 2001). The changes in life style and environment have results in a sufficiently large increase in the number of patients with disease to constitute a social problem. Asthma is a complex syndrome with many clinical phenotypes. Common to all is chronic inflammation with reversible airway obstruction and airway hyperresponsiveness (AHR). The most prevalent form of asthma is atopic asthma which is initiated by the exposure to (inhaled) allergens and resultant allergen-specific immune responses (Shin et al., 2009). Asthma is characterized by inflammatory changes of the airways, in which inflammatory cells such as lymphocytes. Neutrophils and eosinophils and a number of cytokines including leukotrienes released from these cells participate in the late asthmatic reaction. Among inflammatory cells, activated lymphocytes and eosinophils play an important role in induction and persistence of the reaction (Walker et al., 1991). The results are consistent with the data showing enhanced production of LTC 4 by activated eosinophils during antigen challenge. The transfer of pollen grains, the structures housing the male gametes of plants, from floral anther to stigma is the critical reproductive event among higher plants. Like any other plant cells, pollen grains contain many different types of proteins, which are located in major domains: in the cytoplasm and at the surface of exine and intine. These molecules are strategically sited to participate as the male partner in intercellular recognition reactions with the female stigma (Knox & Suphiohlu, 1996; Dickinson et al., 2000). Once pollen grains are placed on stigma or on artificial medium (or mucosal membrane), they release cellular material containing proteins and glycoprotein. These materials from pollen that contribute in interaction pollen-stigma can function as allergens, environment molecules interacting with the human immune system to elicit an allergic response in susceptible individual.
CITATION STYLE
Rezanejad, F., & Maj, A. (2011). The Effects of Air Pollution on Cellular Material Release, Allergenicity and Allergens Proteins of Three Ornamental Plants. In Advanced Topics in Environmental Health and Air Pollution Case Studies. InTech. https://doi.org/10.5772/16934
Mendeley helps you to discover research relevant for your work.