Imaging the molecular gas properties of a major merger driving the evolution of A z = 2.5 submillimeter galaxy

61Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

We report the detection of spatially extended CO(J = 1→0) and CO(J = 5→4) emission in the z = 2.49 submillimeter galaxy (SMG) J123707+6214, using the Expanded Very Large Array and the Plateau de Bure Interferometer. The large molecular gas reservoir is spatially resolved into two CO(J = 1→0) components (northeast and southwest; previously identified in CO J = 3→2 emission) with respective gas masses of 4.3 and 3.5×1010 (αCO/0.8) M . We thus find that the optically invisible northeast component slightly dominates the gas mass in this system. The total molecular gas mass derived from the CO(J = 1→0) observations is ≳2.5× larger than estimated from CO(J = 3→2). The two components are at approximately the same redshift, but separated by 20kpc in projection. The morphology is consistent with that of an early-stage merger. The total amount of molecular gas is sufficient to maintain the intense 500 M yr -1 starburst in this system for at least 160Myr. We derive line brightness temperature ratios of r 31 = 0.39 0.09 and 0.37 0.10, and r 51 = 0.26 0.07 and 0.25 0.08 in the two components, respectively, suggesting that the J ≥ 3 lines are substantially subthermally excited. This also suggests comparable conditions for star formation in both components. Given the similar gas masses of both components, this is consistent with the comparable starburst strengths observed in the radio continuum emission. Our findings are consistent with other recent studies that find evidence for lower CO excitation in SMGs than in high-z quasar host galaxies with comparable gas masses. This may provide supporting evidence that both populations correspond to different evolutionary stages in the formation of massive galaxies. © 2011. The American Astronomical Society. All rights reserved.

Cite

CITATION STYLE

APA

Riechers, D. A., Carilli, L. C., Walter, F., Weiss, A., Wagg, J., Bertoldi, F., … Hodge, J. (2011). Imaging the molecular gas properties of a major merger driving the evolution of A z = 2.5 submillimeter galaxy. Astrophysical Journal Letters, 733(1 PART 2). https://doi.org/10.1088/2041-8205/733/1/L11

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free