The rapid growth of wearables has created a demand for lightweight, elastic and conformal energy harvesting and storage devices. The conducting polymer poly(3,4-ethylenedioxythiophene) has shown great promise for thermoelectric generators, however, the thick layers of pristine poly(3,4-ethylenedioxythiophene) required for effective energy harvesting are too hard and brittle for seamless integration into wearables. Poly(3,4-ethylenedioxythiophene)-elastomer composites have been developed to improve its mechanical properties, although so far without simultaneously achieving softness, high electrical conductivity, and stretchability. Here we report an aqueously processed poly(3,4-ethylenedioxythiophene)-polyurethane-ionic liquid composite, which combines high conductivity (>140 S cm−1) with superior stretchability (>600%), elasticity, and low Young’s modulus (<7 MPa). The outstanding performance of this organic nanocomposite is the result of favorable percolation networks on the nano- and micro-scale and the plasticizing effect of the ionic liquid. The elastic thermoelectric material is implemented in the first reported intrinsically stretchable organic thermoelectric module.
CITATION STYLE
Kim, N., Lienemann, S., Petsagkourakis, I., Alemu Mengistie, D., Kee, S., Ederth, T., … Tybrandt, K. (2020). Elastic conducting polymer composites in thermoelectric modules. Nature Communications, 11(1). https://doi.org/10.1038/s41467-020-15135-w
Mendeley helps you to discover research relevant for your work.