Offshore solar energy presents a new opportunity for low-carbon energy transition. In this research, we identify and rank suitable Offshore Solar Farm (OSF) sites in the Aegean Sea, Greece, considering various constraints and assessment criteria. The methodology includes two distinct phases. In the first phase, Geographic Information Systems (GIS) are used to spatially depict both incompatible and compatible marine areas for OSF deployment, while in the second phase, two models based on different combinations of multi-criteria decision-making methods are deployed to hierarchically rank the eligible areas for OSF deployment. The first model (Objective Model—OM) attributes weights to assessment criteria using an entropy-based weight method, while the second model (Subjective Model—SM) utilizes the pairwise comparison of the Analytical Hierarchy Process (AHP) method. Both models use TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) to prioritize the suitable OSF sites. The results indicate the existence of nine suitable OSF marine areas in the Greek marine environment (total surface area of 17.25 km2) and a different ranking of these sites depending upon the deployed model (OM or SM). The present approach provides useful guidelines for OSF site selection in Greece as well as in other countries.
CITATION STYLE
Vagiona, D. G., Tzekakis, G., Loukogeorgaki, E., & Karanikolas, N. (2022). Site Selection of Offshore Solar Farm Deployment in the Aegean Sea, Greece. Journal of Marine Science and Engineering, 10(2). https://doi.org/10.3390/jmse10020224
Mendeley helps you to discover research relevant for your work.