Heat transport in horizontal and inclined convection

0Citations
Citations of this article
2Readers
Mendeley users who have this article in their library.
Get full text

Abstract

We discuss three classical paradigmatic systems of thermally driven flows: Rayleigh–Bénard convection, where a fluid is confined between a heated bottom plate and a cooled top plate, horizontal convection, where the fluid is heated at one part of the bottom and cooled at some other part, and vertical convection, where the fluid is confined between two differently heated isothermal vertical plates. Rayleigh–Bénard and vertical convection can be also considered as limiting cases of so-called inclined convection. For these systems we study how the heat and momentum transport, which is represented by the Nusselt number and Reynolds number, scales with the main governing parameters of the system, which are the Rayleigh number and Prandtl number. We show that different boundary conditions generally lead to different scaling diagrams in the Prandtl–Rayleigh plane. For laminar vertical convection the scalings can be derived from the boundary layer equations, see Shishkina (Phys Rev E 93:051102, 2016, [8]). In the case of horizontal convection, the scalings can be derived from the analysis of the boundary-layer and bulk contributions of the kinetic and thermal dissipation rates, see Shishkina et al. (Geophys Res Lett 43:1219–1225, 2016, [5]). Here we summarize some previous results and discuss the applicability of the developed theory to global ocean circulation.

Cite

CITATION STYLE

APA

Shishkina, O. (2017). Heat transport in horizontal and inclined convection. In Springer Proceedings in Physics (Vol. 196, pp. 245–250). Springer Science and Business Media, LLC. https://doi.org/10.1007/978-3-319-57934-4_35

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free