Electricity generation from digitally printed cyanobacteria

123Citations
Citations of this article
330Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Microbial biophotovoltaic cells exploit the ability of cyanobacteria and microalgae to convert light energy into electrical current using water as the source of electrons. Such bioelectrochemical systems have a clear advantage over more conventional microbial fuel cells which require the input of organic carbon for microbial growth. However, innovative approaches are needed to address scale-up issues associated with the fabrication of the inorganic (electrodes) and biological (microbe) parts of the biophotovoltaic device. Here we demonstrate the feasibility of using a simple commercial inkjet printer to fabricate a thin-film paper-based biophotovoltaic cell consisting of a layer of cyanobacterial cells on top of a carbon nanotube conducting surface. We show that these printed cyanobacteria are capable of generating a sustained electrical current both in the dark (as a 'solar bio-battery') and in response to light (as a 'bio-solar-panel') with potential applications in low-power devices.

Cite

CITATION STYLE

APA

Sawa, M., Fantuzzi, A., Bombelli, P., Howe, C. J., Hellgardt, K., & Nixon, P. J. (2017). Electricity generation from digitally printed cyanobacteria. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-01084-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free