Monopartite begomoviruses (Geminiviridae), which are whitefly-transmitted single-stranded DNA viruses known for causing devastating crop diseases, are often associated with satellite DNAs. Since begomovirus acquisition or exchange of satellite DNAs may lead to adaptation to new plant hosts and emergence of new disease complexes, it is important to investigate the diversity and distribution of these molecules. This study reports begomovirus-associated satellite DNAs identified during a vector-enabled metagenomic (VEM) survey of begomoviruses using whiteflies collected in various locations (California (USA), Guatemala, Israel, Puerto Rico, and Spain). Protein-encoding satellite DNAs, including alphasatellites and betasatellites, were identified in Israel, Puerto Rico, and Guatemala. Novel alphasatellites were detected in samples from Guatemala and Puerto Rico, resulting in the description of a phylogenetic clade (DNA-3-type alphasatellites) dominated by New World sequences. In addition, a diversity of small (~640–750 nucleotides) satellite DNAs similar to satellites associated with begomoviruses infecting Ipomoea spp. were detected in Puerto Rico and Spain. A third class of satellite molecules, named gammasatellites, is proposed to encompass the increasing number of reported small (<1 kilobase), non-coding begomovirus-associated satellite DNAs. This VEM-based survey indicates that, although recently recovered begomovirus genomes are variations of known genetic themes, satellite DNAs hold unexplored genetic diversity.
CITATION STYLE
Rosario, K., Marr, C., Varsani, A., Kraberger, S., Stainton, D., Moriones, E., … Breitbart, M. (2016). Begomovirus-associated satellite DNA diversity captured through vector-enabled metagenomic (VEM) surveys using whiteflies (Aleyrodidae). Viruses, 8(2). https://doi.org/10.3390/v8020036
Mendeley helps you to discover research relevant for your work.