On the Nanocommunications at THz Band in Graphene-Enabled Wireless Network-on-Chip

13Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

One of the main challenges towards the growing computation-intensive applications with scalable bandwidth requirement is the deployment of a dense number of on-chip cores within a chip package. To this end, this paper investigates the Wireless Network-on-Chip (WiNoC), which is enabled by graphene-based nanoantennas (GNAs) in Terahertz frequency band. We first develop a channel model between the GNAs taking into account the practical issues of the propagation medium, such as transmission frequency, operating temperature, ambient pressure, and distance between the GNAs. In the Terahertz band, not only dielectric propagation loss but also molecular absorption attenuation (MAA) caused by various molecules and their isotopologues within the chip package constitutes the signal transmission loss. We further propose an optimal power allocation to achieve the channel capacity. The proposed channel model shows that the MAA significantly degrades the performance at certain frequency ranges compared to the conventional channel model, even when the GNAs are very closely located. More specifically, at transmission frequency of 1 THz, the channel capacity of the proposed model is shown to be much lower than that of the conventional model over the whole range of temperature and ambient pressure of up to 26.8% and 25%, respectively.

Cite

CITATION STYLE

APA

Vien, Q. T., Agyeman, M. O., Le, T. A., & Mak, T. (2017). On the Nanocommunications at THz Band in Graphene-Enabled Wireless Network-on-Chip. Mathematical Problems in Engineering, 2017. https://doi.org/10.1155/2017/9768604

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free