Zika virus NS1 suppresses VE-cadherin via hsa-miR-29b-3p/DNMT3b/MMP-9 pathway in human brain microvascular endothelial cells

2Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Zika virus infection has been reported to cause microcephaly in newborns. ZIKV exploits various strategies to cross the blood-brain barrier. ZIKV NS1 may compromise the barrier integrity of endothelial cells by regulating expression of junctional proteins. MicroRNAs play an important role in post-transcriptional gene regulations. We demonstrated that ZIKV-NS1 affected the adherence junction protein in human brain microvascular endothelial cells via hsa-miR-29b-3p/DNMT3b/MMP-9 pathway. The hCMEC/D3 cells were exposed to ZIKV-NS1 with different doses (500 ng/mL and 1000 ng/mL) for 24 h. The expression pattern of DNTM3b, MMP-9, and VE-cadherin were studied using immunoblotting and the distribution of DNMT3b and MMP-9 were studied using immunofluorescence. The quantification of hsa-miR-29b-3p was done through qRT-PCR. Direct regulation of DNMT3b by hsa-miR-29b-3p was demonstrated by overexpression of hsa-miR-29b-3p using hsa-miR-29b-3p mimic, and knockdown of hsa-miR-29b-3p by using hsa-miR-29b-3p inhibitors. The ZIKV-NS1 affected the barrier function of endothelial cells through the increased expression of hsa-miR29b-3p, which suppressed the DNMT3b, thus enhanced expression of MMP-9, which finally suppressed the expression of VE-cadherin. These findings suggested that ZIKV-NS1 alters the expression of Adherens Junction protein in human brain microvascular endothelial cells through hsa-miR-29b-3p/DNMT3b/MMP-9 pathway, which compromised the barrier function of human brain microvascular endothelial cells.

Cite

CITATION STYLE

APA

Bhardwaj, U., & Singh, S. K. (2023). Zika virus NS1 suppresses VE-cadherin via hsa-miR-29b-3p/DNMT3b/MMP-9 pathway in human brain microvascular endothelial cells. Cellular Signalling, 106. https://doi.org/10.1016/j.cellsig.2023.110659

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free