A survey on multi-lingual offensive language detection

2Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The prevalence of offensive content on online communication and social media platforms is growing more and more common, which makes its detection difficult, especially in multilingual settings. The term “Offensive Language” encompasses a wide range of expressions, including various forms of hate speech and aggressive content. Therefore, exploring multilingual offensive content, that goes beyond a single language, focus and represents more linguistic diversities and cultural factors. By exploring multilingual offensive content, we can broaden our understanding and effectively combat the widespread global impact of offensive language. This survey examines the existing state of multilingual offensive language detection, including a comprehensive analysis on previous multilingual approaches, and existing datasets, as well as provides resources in the field. We also explore the related community challenges on this task, which include technical, cultural, and linguistic ones, as well as their limitations. Furthermore, in this survey we propose several potential future directions toward more efficient solutions for multilingual offensive language detection, enabling safer digital communication environment worldwide.

Cite

CITATION STYLE

APA

Mnassri, K., Farahbakhsh, R., Chalehchaleh, R., Rajapaksha, P., Jafari, A. R., Li, G., & Crespi, N. (2024). A survey on multi-lingual offensive language detection. PeerJ Computer Science, 10. https://doi.org/10.7717/peerj-cs.1934

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free