Background/Aims: Arterial stenosis activates the renin-angiotensin-aldosterone system subsequently resulting in renovascular hypertension (RVHT) and renal oxidative injury. We explored the effect of sodium thiosulfate (STS, Na2S2O3), a developed antioxidant in clinical trial, on RVHT-induced hypertension and renal oxidative injury in rats. Methods: We induced RVHT in male Wistar rats with bilaterally partial ligation of renal arteries in the 2-kidney 2-clip model. We evaluated the STS effect on RVHT-induced oxidative injury and apoptosis by a chemiluminescence amplification method, Western blot, and immunohistochemistry. Results: We found STS displayed a dose-dependent antioxidant H2O2 activity and adapted the maximal scavenging H2O2 activity of STS at the dosage of 0.1 g/kg intraperitoneally 3 times/week for 4 weeks in RVHT rats. RVHT induced a significant elevation of arterial blood pressure, blood reactive oxygen species amount, neutrophil infiltration, 4-HNE and NADPH oxidase gp91 expression, Bax/Bcl-2/poly(ADP-ribose) polymerase (PARP)-mediated apoptosis formation, blue Masson-stained fibrosis, and urinary protein level. STS treatment significantly reduced hypertension, oxidative stress, neutrophil infiltration, fibrosis, and Bax/Bcl-2/PARP-mediated apoptosis formation and depressed the urinary protein level in the RVHT models. Conclusion: Our results suggest that STS treatment could ameliorate RVHT hypertension and renal oxidative injury through antioxidant, antifibrotic, and antiapoptotic mechanisms.
CITATION STYLE
Chou, P. L., Chen, Y. S., Chung, S. D., Lin, S. C., & Chien, C. T. (2021). Sodium Thiosulfate Ameliorates Renovascular Hypertension-Induced Renal Dysfunction and Injury in Rats. Kidney and Blood Pressure Research, 46(1), 41–52. https://doi.org/10.1159/000510047
Mendeley helps you to discover research relevant for your work.