The rise of high-quality cloud services has made service recommendation a crucial research question. Quality of Service (QoS) is widely adopted to characterize the performance of services invoked by users. For this purpose, the QoS prediction of services constitutes a decisive tool to allow end-users to optimally choose high-quality cloud services aligned with their needs. The fact is that users only consume a few of the broad range of existing services. Thereby, perform a high-accurate service recommendation becomes a challenging task. To tackle the aforementioned challenges, we propose a data sparsity resilient service recommendation approach that aims to predict relevant services in a sustainable manner for end-users. Indeed, our method performs both a QoS prediction of the current time interval using a flexible matrix factorization technique and a QoS prediction of the future time interval using a time series forecasting method based on an AutoRegressive Integrated Moving Average (ARIMA) model. The service recommendation in our approach is based on a couple of criteria ensuring in a lasting way, the appropriateness of the services returned to the active user. The experiments are conducted on a real-world dataset and demonstrate the effectiveness of our method compared to the competing recommendation methods.
CITATION STYLE
Ngaffo, A. N., Ayeb, W. E., & Choukair, Z. (2022). Service recommendation driven by a matrix factorization model and time series forecasting. Applied Intelligence, 52(1), 1110–1125. https://doi.org/10.1007/s10489-021-02478-0
Mendeley helps you to discover research relevant for your work.