Paclitaxel (PTX) is the front-line chemotherapeutic agent against human non-small cell lung cancer (NSCLC). However, its therapeutic efficacy is restricted by the increasing frequency of chemotherapeutic resistance in NSCLC. Accumulating evidence has shown the potential role of microRNAs (miRNAs) in the chemotherapeutic sensitivity of cancer cells. Previously it was reported that microRNA-7 (miR-7) acts as an important tumor suppressor in NSCLC. Therefore, the present study was conducted to determine the regulatory role of miR-7 in PTX chemotherapy for NSCLC. Four NSCLC cell lines were used to analyze the correlation of the PTX-sensitivity and endogenoaus miR-7 expression. miR-7 expression was up-and downregulated using miR-7 mimics and inhibitors respectively, and the role of miR-7 in sensitizing NSCLC cells to PTX was assessed by cell viability and apoptosis assays. The molecular mechanism of PTX sensitivity was determined by quantitative polymerase chain reaction and western blotting. It was found that the sensitivity of NSCLC cells to PTX was dependent on endogenous miR-7. Upregulation of miR-7 enhanced the PTX-sensitivity of NSCLC cells by suppressing cell proliferation and promoting cell apoptosis, while the inhibition of miR-7 abrogated the antiproliferative proapoptotic effects of PTX. Pretreatment of miR-7 mimics enhanced the PTX-mediated downregulation of epidermal growth factor receptor (EGFR) in NSCLC cells. These results have identified miR-7 as a potential EGFR-targeting sensitizer in PTX therapy. These data may facilitate the development of novel chemotherapeutic approaches for NSCLC.
CITATION STYLE
Liu, R., Liu, X., Zheng, Y., Gu, J., Xiong, S., Jiang, P., … Chu, Y. (2014). MicroRNA-7 sensitizes non-small cell lung cancer cells to paclitaxel. Oncology Letters, 8(5), 2193–2200. https://doi.org/10.3892/ol.2014.2500
Mendeley helps you to discover research relevant for your work.