Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice

159Citations
Citations of this article
72Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Among the eight progressive neurodegenerative diseases caused by polyglutamine expansions, spinocerebellar ataxia type 7 (SCA7) is the only one to display degeneration in both brain and retina. We show here that mice overexpressing full-length mutant ataxin-7[Q90] either in Purkinje cells or in rod photoreceptors have deficiencies in motor coordination and vision, respectively. In both models, although with different time courses, an N-terminal fragment of mutant ataxin-7 accumulates into ubiquitinated nuclear inclusions that recruit a distinct set of chaperone/proteasome subunits. A severe degeneration is caused by overexpression of ataxin-7[Q90] in rods, whereas a similar overexpression of normal ataxin-7[Q10] has no obvious effect. The degenerative process is not limited to photoreceptors, showing secondary alterations of post-synaptic neurons. These findings suggest that proteolytic cleavage of mutant ataxin-7 and trans-neuronal responses are implicated in the pathogenesis of SCA7.

Cite

CITATION STYLE

APA

Yvert, G., Lindenberg, K. S., Picaud, S., Landwehrmeyer, G. B., Sahel, J. A., & Mandel, J. L. (2000). Expanded polyglutamines induce neurodegeneration and trans-neuronal alterations in cerebellum and retina of SCA7 transgenic mice. Human Molecular Genetics, 9(17), 2491–2506. https://doi.org/10.1093/hmg/9.17.2491

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free