In this paper, we propose an underwater target perception architecture, which adopts the three-stage processing including underwater scene acoustic imaging, local high-order statistics (HOS) space conversion, and region-of-interest (ROI) detection. After analysing the problem of the underwater targets represented by the acoustic images, the unique cube structure of the target in local skewness space is noticed, which is used as a clue to develop the ROI detection of underwater scenes. In order to restore the actual appearance of the ROI as much as possible, the focus processing is explored to achieve the target reconstruction. When the target size and number are unknown, using an uncertain theoretical template can achieve a better target reconstruction effect. The performance of the proposed method in terms of SNR, detection rate, and false alarm rate is verified by experiments with several acoustic image sequences. Moreover, target perception architecture is general and can be generalized to a wider range of underwater applications.
CITATION STYLE
Gao, J., & Zhu, P. (2021). Underwater Target Perception in Local HOS Space. Computational Intelligence and Neuroscience, 2021. https://doi.org/10.1155/2021/5190655
Mendeley helps you to discover research relevant for your work.