A Ferritin Nanoparticle-Based Zika Virus Vaccine Candidate Induces Robust Humoral and Cellular Immune Responses and Protects Mice from Lethal Virus Challenge

17Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

The severe consequences of the Zika virus (ZIKV) infections resulting in congenital Zika syndrome in infants and the autoimmune Guillain–Barre syndrome in adults warrant the development of safe and efficacious vaccines and therapeutics. Currently, there are no approved treatment options for ZIKV infection. Herein, we describe the development of a bacterial ferritin-based nanoparticle vaccine candidate for ZIKV. The viral envelope (E) protein domain III (DIII) was fused in-frame at the amino-terminus of ferritin. The resulting nanoparticle displaying the DIII was examined for its ability to induce immune responses and protect vaccinated animals upon lethal virus challenge. Our results show that immunization of mice with a single dose of the nanoparticle vaccine candidate (zDIII-F) resulted in the robust induction of neutralizing antibody responses that protected the animals from the lethal ZIKV challenge. The antibodies neutralized infectivity of other ZIKV lineages indicating that the zDIII-F can confer heterologous protection. The vaccine candidate also induced a significantly higher frequency of interferon (IFN)-γ positive CD4 T cells and CD8 T cells suggesting that both humoral and cell-mediated immune responses were induced by the vaccine candidate. Although our studies showed that a soluble DIII vaccine candidate could also induce humoral and cell-mediated immunity and protect from lethal ZIKV challenge, the immune responses and protection conferred by the nanoparticle vaccine candidate were superior. Further, passive transfer of neutralizing antibodies from the vaccinated animals to naïve animals protected against lethal ZIKV challenge. Since previous studies have shown that antibodies directed at the DIII region of the E protein do not to induce antibody-dependent enhancement (ADE) of ZIKV or other related flavivirus infections, our studies support the use of the zDIII-F nanoparticle vaccine candidate for safe and enhanced immunological responses against ZIKV.

References Powered by Scopus

Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns

1690Citations
N/AReaders
Get full text

The Brazilian Zika virus strain causes birth defects in experimental models

1056Citations
N/AReaders
Get full text

Cross-reacting antibodies enhance dengue virus infection in humans

766Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Nanoparticles and Antiviral Vaccines

12Citations
N/AReaders
Get full text

An Update on Zika Virus Vaccine Development and New Research Approaches

5Citations
N/AReaders
Get full text

Construction and immune effect evaluation of the S protein heptad repeat-based nanoparticle vaccine against porcine epidemic diarrhea virus

5Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Pattnaik, A., Sahoo, B. R., Struble, L. R., Borgstahl, G. E. O., Zhou, Y., Franco, R., … Pattnaik, A. K. (2023). A Ferritin Nanoparticle-Based Zika Virus Vaccine Candidate Induces Robust Humoral and Cellular Immune Responses and Protects Mice from Lethal Virus Challenge. Vaccines, 11(4). https://doi.org/10.3390/vaccines11040821

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 6

67%

Researcher 2

22%

Professor / Associate Prof. 1

11%

Readers' Discipline

Tooltip

Immunology and Microbiology 3

38%

Biochemistry, Genetics and Molecular Bi... 2

25%

Engineering 2

25%

Materials Science 1

13%

Save time finding and organizing research with Mendeley

Sign up for free