Thermodynamic insights for electrochemical hydrogen compression with proton-conducting membranes

24Citations
Citations of this article
86Readers
Mendeley users who have this article in their library.

Abstract

Membrane electrode assemblies (MEA) based on proton-conducting electrolyte membranes offer opportunities for the electrochemical compression of hydrogen. Mechanical hydrogen compression, which is more-mature technology, can suffer from low reliability, noise, and maintenance costs. Proton-conducting electrolyte membranes may be polymers (e.g., Nafion) or protonic-ceramics (e.g., yttrium-doped barium zirconates). Using a thermodynamics-based analysis, the paper explores technology implications for these two membrane types. The operating temperature has a dominant influence on the technology, with polymers needing low-temperature and protonic-ceramics needing elevated temperatures. Polymer membranes usually require pure hydrogen feed streams, but can compress H2 efficiently. Reactors based on protonic-ceramics can effectively integrate steam reforming, hydrogen separation, and electrochemical compression. However, because of the high temperature (e.g., 600 °C) needed to enable viable proton conductivity, the efficiency of protonic-ceramic compression is significantly lower than that of polymer-membrane compression. The thermodynamics analysis suggests significant benefits associated with systems that combine protonic-ceramic reactors to reform fuels and deliver lightly compressed H2 (e.g., 5 bar) to an electrochemical compressor using a polymer electrolyte to compress to very high pressure.

Cite

CITATION STYLE

APA

Kee, B. L., Curran, D., Zhu, H., Braun, R. J., DeCaluwe, S. C., Kee, R. J., & Ricote, S. (2019). Thermodynamic insights for electrochemical hydrogen compression with proton-conducting membranes. Membranes, 9(7). https://doi.org/10.3390/membranes9070077

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free