Ankyrin-like protein AnkB interacts with CatB, affects catalase activity, and enhances resistance of Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola to phenazine-1-carboxylic acid

10Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Xanthomonas oryzae pv. oryzae, which causes rice bacterial leaf blight, and Xanthomonas oryzae pv. oryzicola, which causes rice bacterial leaf streak, are important plant-pathogenic bacteria. A member of the adaptor protein family, ankyrin protein, has been investigated largely in humans but rarely in plant-pathogenic bacteria. In this study, a novel ankyrin-like protein, AnkB, was identified in X. oryzae pv. oryzae and X. oryzae pv. oryzicola. The expression of ankB was significantly upregulated when these bacteria were treated with phenazine-1-carboxylic acid (PCA). ankB is located 58 bp downstream of the gene catB (which encodes a catalase) in both bacteria, and the gene expression of catB and catalase activity were reduced following ankB deletion in X. oryzae pv. oryzae and X. oryzae pv. oryzicola. Furthermore, we demonstrated that AnkB directly interacts with CatB by glutathione S-transferase (GST) pulldown assays. Deletion of ankB increased the sensitivity of X. oryzae pv. oryzae and X. oryzae pv. oryzicola to H2O2 and PCA, decreased bacterial biofilm formation, swimming ability, and exopolysaccharide (EPS) production, and also reduced virulence on rice. Together our results indicate that the ankyrin-like protein AnkB has important and conserved roles in antioxidant systems and pathogenicity in X. oryzae pv. oryzae and X. oryzae pv. oryzicola.

Cite

CITATION STYLE

APA

Pan, X., Xu, S., Wu, J., Duan, Y., Zheng, Z., Wang, J., … Zhou, M. (2018). Ankyrin-like protein AnkB interacts with CatB, affects catalase activity, and enhances resistance of Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola to phenazine-1-carboxylic acid. Applied and Environmental Microbiology, 84(4). https://doi.org/10.1128/AEM.02145-17

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free