A long-lived heavy precipitation area was observed along the southwest coast of Taiwan from 13 to 18 June 2008 during the Terrain-Influenced Monsoon Rainfall Experiment (TiMREX). Rainfall amounts exceeded 500mm along portions of the coast, and the coastal plains experienced severe flooding. The precipitation systems were influenced by blocking effects, as the southerly moist monsoon flow impinged on the island. A relatively strong gradient in the sea surface temperature (SST) off the southwest coast of Taiwan existed during the rainfall event. Mesoscale SST fronts are known to influence the planetary boundary layer (PBL) such that low-level convergence and precipitation are enhanced under certain circumstances. In this study, the authors investigate the role of the SST front in enhancing the 13-18 June 2008 precipitation event over Taiwan using the Weather Research and Forecasting (WRF) Model. In control simulations with the observed SST, there is a transition from a well-mixed to a stable PBL across the front, causing the low-level flow to decelerate, resulting in an enhancement of horizontal convergence. Such a transition in the PBL and the associated convergence is greatly reduced in smoothed SST gradient model simulations, which produce over 20% less precipitation over southwest Taiwan. Sensitivity tests show that, qualitatively, the results are independent of the existence of the island of Taiwan. These findings indicate that the SST gradient over the northern South China Sea during the early summer monsoon can have a significant impact on the intensity of rainfall over Taiwan. © 2014 American Meteorological Society.
CITATION STYLE
Toy, M. D., & Johnson, R. H. (2014). The influence of an SST front on a heavy rainfall event over coastal Taiwan during TiMREX. Journal of the Atmospheric Sciences, 71(9), 3223–3249. https://doi.org/10.1175/JAS-D-13-0338.1
Mendeley helps you to discover research relevant for your work.