Fast and realistic large-scale structure from machine-learning-augmented random field simulations

9Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

Abstract

Producing thousands of simulations of the dark matter distribution in the Universe with increasing precision is a challenging but critical task to facilitate the exploitation of current and forthcoming cosmological surveys. Many inexpensive substitutes to full N-body simulations have been proposed, even though they often fail to reproduce the statistics of the smaller non-linear scales. Among these alternatives, a common approximation is represented by the lognormal distribution, which comes with its own limitations as well, while being extremely fast to compute even for high-resolution density fields. In this work, we train a generative deep learning model, mainly made of convolutional layers, to transform projected lognormal dark matter density fields to more realistic dark matter maps, as obtained from full N-body simulations. We detail the procedure that we follow to generate highly correlated pairs of lognormal and simulated maps, which we use as our training data, exploiting the information of the Fourier phases. We demonstrate the performance of our model comparing various statistical tests with different field resolutions, redshifts, and cosmological parameters, proving its robustness and explaining its current limitations. When evaluated on 100 test maps, the augmented lognormal random fields reproduce the power spectrum up to wavenumbers of 1 hMpc−1, and the bispectrum within 10 per cent, and always within the error bars, of the fiducial target simulations. Finally, we describe how we plan to integrate our proposed model with existing tools to yield more accurate spherical random fields for weak lensing analysis.

Cite

CITATION STYLE

APA

Piras, D., Joachimi, B., & Villaescusa-Navarro, F. (2023). Fast and realistic large-scale structure from machine-learning-augmented random field simulations. Monthly Notices of the Royal Astronomical Society, 520(1), 668–683. https://doi.org/10.1093/mnras/stad052

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free