The effect of the botanical origin, pH level and ethanol content of different oenological tannins on the color of malvidin-3-O-monoglucoside solution, including their effectiveness as copigments, was studied. Briefly, a model wine solution (4 g/L of tartaric acid, pH 3.5 and 12% ethanol) containing 50 mg/L of malvidin-3-O-monoglucoside was prepared and supplemented with 0.1, 0.2 and 0.4 g/L of commercial tannins using (−)-epicatechin as reference control copigment. Six additional model wine solutions (12% ethanol at pH 3.1, 3.5 or 3.9, and 10%, 12% or 14% ethanol at pH 3.5) were prepared as previously described. Samples were stored under airtight conditions. After a week the full absorbance spectrum in the visible range (400–800 nm) was measured and CIELAB color space was determined. These measurements, including an increase in a* (redness), a decrease in b* (yellowness) and a decrease in L* (lightness), indicated that all oenological tannins had a clear positive effect on color copigmentation. Moreover, hydrolysable tannins appeared to be better copigments than condensed tannins as the copigmentation effectiveness (Cp) was found to be between two to four times higher. The effects of these tannins were dose-dependent because a higher addition resulted in a greater impact on copigmentation. In general, an increase in pH and ethanol content resulted in a decrease of the effect of tannins on color. Independent of intrinsic wine conditions, hydrolysable tannins, more specifically gallotannin, remain the most effective in increasing red wine color. These results prove that supplementation with oenological tannins, especially hydrolysable tannins, could be an interesting tool for the improvement of the red wine color.
CITATION STYLE
Vignault, A., Gombau, J., Pascual, O., Jourdes, M., Moine, V., Canals, J. M., … Teissedre, P. L. (2019). Copigmentation of malvidin-3-O-monoglucoside by oenological tannins: Incidence on wine model color in function of botanical origin, pH and ethanol content. Molecules, 24(8). https://doi.org/10.3390/molecules24081448
Mendeley helps you to discover research relevant for your work.