Limb Remote ischemic conditioning (LRIC) has been proved to be a promising neuroprotective method in white matter lesions after ischemia; however, its mechanism underlying protection after chronic cerebral hypoperfusion remains largely unknown. Here, we investigated whether LRIC promoted myelin growth by activating PI3K/Akt/mTOR signal pathway in a rat chronic hypoperfusion model. Thirty adult male Sprague Dawley underwent permanent double carotid artery (2VO), and limb remote ischemic conditioning was applied for 3 days after the 2VO surgery. Cognitive function, oligodendrocyte counts, myelin density, apoptosis and proliferation activity, as well as PTEN/Akt/mTOR signaling activity were determined 4 weeks after treatment. We found that LRIC significantly inhibited oligodendrocytes apoptosis (p<0.05), promoted myelination (p<0.01) in the corpus callosum and improved spatial learning impairment (p<0.05) at 4 weeks after chronic cerebral hypoperfusion. Oligodendrocytes proliferation, along with demyelination, in corpus callosum were not obviously affected by LRIC (p>0.05). Western blot analysis indicated that LRIC upregulated PTEN/Akt/mTOR signaling activities in corpus callosum (p<0.05). Our results suggest that LRIC exerts neuroprotective effect on white matter injuries through activating PTEN/Akt/mTOR signaling pathway after chronic cerebral hypoperfusion.
CITATION STYLE
Li, X., Ren, C., Li, S., Han, R., Gao, J., Huang, Q., … Ji, X. (2017). Limb remote ischemic conditioning promotes myelination by upregulating PTEN/Akt/mTOR signaling activities after chronic cerebral hypoperfusion. Aging and Disease, 8(4), 392–401. https://doi.org/10.14336/AD.2016.1227
Mendeley helps you to discover research relevant for your work.