Somatic missense mutations in the mixed lineage leukemia 1 (MLL1) his-tone H3K4 methyltransferase are often observed in cancers. MLL1 forms a complex with WDR5, RBBP5, and ASH2L (WRA) which stimulates its activity. The MM-102 compound prevents the interaction between MLL1 and WDR5 and functions as an MLL1 inhibitor. We have studied the effects of four cancer mutations in the catalytic SET domain of MLL1 on the enzymatic activity of MLL1 and MLL1–WRA complexes. In addition, we studied the interaction of the MLL1 mutants with the WRA proteins and inhibition of MLL1–WRA complexes by MM-102. All four investi-gated mutations had strong effects on the activity of MLL1. R3903H was inactive and S3865F showed reduced activity both alone and in complex with WRA, but its activity was stimulated by the WRA complex. By con-trast, R3864C and R3841W were both more active than wild-type MLL1, but still less active than the wild-type MLL1–WRA complex. Both mutants were not stimulated by complex formation with WRA, although no differ-ences in the interaction with the complex proteins were observed. These results indicate that both mutants are in an active conformation even in the absence of the WRA complex and their normal control of activity by the WRA complex is altered. In agreement with this observation, the activity of R3864C and R3841W was not reduced by addition of the MM-102 inhibitor. We show that different cancer mutations in MLL1 lead to a loss or increase in activity, illustrating the complex and tumor-specific role of MLL1 in carcinogenesis. Our data exemplify that biochemical investiga-tions of somatic tumor mutations are required to decipher their pathologi-cal role. Moreover, our data indicate that MM-102 may not be used as an MLL1 inhibitor if the R3864C and R3841W mutations are present. More generally, the efficacy of any enzyme inhibitor must be experimentally con-firmed for mutant enzymes before an application can be considered.
CITATION STYLE
Weirich, S., Kudithipudi, S., & Jeltsch, A. (2017). Somatic cancer mutations in the MLL1 histone methyltransferase modulate its enzymatic activity and dependence on the WDR5/RBBP5/ASH2L complex. Molecular Oncology, 11(4), 373–387. https://doi.org/10.1002/1878-0261.12041
Mendeley helps you to discover research relevant for your work.