We report a sub-diffraction resolution imaging of non-fluorescent samples through quantitative phase imaging. This is achieved through a novel application of structured illumination microscopy (SIM), a super-resolution imaging technique established primarily for fluorescence microscopy. Utilizing our contrast transfer function formalism with SIM, we extract the high spatial frequency components of the phase profile from the defocused intensity images, enabling the reconstruction of a quantitative phase image with a frequency spectrum that surpasses the diffraction limit imposed by the imaging system. Our approach offers several advantages including a deterministic, phase-unwrapping-free algorithm and an easily implementable, non-interferometric setup. We validate the proposed technique for high-resolution phase imaging through both simulation and experimental results, demonstrating a two-fold enhancement in resolution. A lateral resolution of 0.814 µm is achieved for the phase imaging of human cheek cells using a 0.42 NA objective lens and an illumination wavelength of 660 nm, highlighting the efficacy of our approach for high-resolution quantitative phase imaging.
CITATION STYLE
Shanmugavel, S. C., & Zhu, Y. (2023). Structured illumination contrast transfer function for high resolution quantitative phase imaging. Optics Express, 31(24), 40151. https://doi.org/10.1364/oe.504961
Mendeley helps you to discover research relevant for your work.