Screen-printed carbon electrode/natural silica-ceria nanocomposite for electrochemical aptasensor application

11Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

A nanocomposite of natural silica and ceria was synthesized to modify a screen-printed carbon electrode (SPCE) to develop an aptasensor to detect epithelial sodium channel (ENaC) protein in urine as a biomarker of hypertension. The method steps were the synthesis of natural silica-ceria nanocomposite using the hydrothermal method, obtaining of natural silica nanoparticles from the extraction of alkaline silica sand and ceria nanoparticles from cerium nitrate, modification of SPCE/natural silica-ceria, immobilization of aptamer through streptavidin-biotin, and detection of ENaC protein concentration. Box-Behnken’s design was employed to determine the optimal conditions of aptamer concentration (0.5 μg mL-1), streptavidin incubation time (30 min), and aptamer incubation time (1 hour), respectively. Differential pulse voltammetry (DPV) characterization of the developed electrochemical aptasensor revealed that the [Fe(CN)6]3-/4- redox peak current increased from 3.190 to 9.073 μA, with detection and quantification limits of 0.113 and 0.343 ng mL-1, respectively. The method is proven as a simple and rapid method to monitor ENaC levels in urine samples.

Cite

CITATION STYLE

APA

Zakiyyah, S. N., Eddy, D. R., Firdaus, M. L., Subroto, T., & Hartati, Y. W. (2022). Screen-printed carbon electrode/natural silica-ceria nanocomposite for electrochemical aptasensor application. Journal of Electrochemical Science and Engineering, 12(6), 1225–1242. https://doi.org/10.5599/jese.1455

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free