Promising Role of Engineered Gene Circuits in Gene Therapy

  • Wang W
  • Lang J
N/ACitations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

Synthetic biology is concerned with applying the engineering paradigm of systems design to biological systems in order to produce predictable and robust systems with novel functionalities that do not exist in nature. The circuit-like connectivity of biological parts and their ability to collectively process logical operations was first appreciated nearly 50 years ago. This inspired attempts to describe biological regulation schemes with mathematical models and to apply circuit analogies from established frameworks in electrical engineering(McAdams & Arkin A,2000). Meanwhile, breakthroughs in genomic research and genetic engineering (e.g., recombinant DNA technology) were supplying the inventory and methods necessary to physically construct and assemble biomolecular parts. As a result, synthetic biology was born with the broad goal of engineering or “wiring” biological circuitry—be it genetic, protein, viral, pathway, or genomic—for manifesting logical forms of cellular control. Synthetic biology, equipped with the engineering-driven approaches of modularization, rationalization, and modeling, has progressed rapidly and generated an ever-increasing suite of genetic devices and biological modules. synthetic biology is seeking to use and expand the mechanisms that control biological organisms using engineering approaches. These approaches will be applied on all scales of biological complexity: from the basic units to novel interactions between these units to novel multi-component modules that generate complex logical behaviour, and even to completely or partially engineered cells(McAdams & Shapiro,1995). Bringing the engineering paradigm to biology will allow us to apply existing biological knowledge to biotechnological problems in a much more rational and systematic way than has previously been possible, and at the same time to expand the scope of what can be achieved this way. The introduction of design principles such as modularity of parts, standardization of parts and devices according to internationally recognized criteria, and the adaptation of available abstract design procedures to biological systems, coupled to novel technological breakthroughs that allow the decoupling of design and fabrication, will fundamentally change our current concepts of how to manipulate biological systems. In this sense, synthetic biology is not primarily a “discovery science”, but is ultimately about a new way of making things. By adapting natural biological mechanisms to the requirements of an engineering approach, the possibilities for re-assembling biological systems in a designed way will increase tremendously. While several of the fundamental scientific issues and current applied objectives of synthetic biology overlap with those in other, more mature fields, especially

Cite

CITATION STYLE

APA

Wang, W.-D., & Lang, J. (2011). Promising Role of Engineered Gene Circuits in Gene Therapy. In Gene Therapy - Developments and Future Perspectives. InTech. https://doi.org/10.5772/17400

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free